V = 2337.2 (8) Å³

Mo $K\alpha$ radiation $\mu = 1.25 \text{ mm}^{-1}$

T = 153 (2) K $0.50 \times 0.50 \times 0.12 \text{ mm}$

Z = 8

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Potassium (4-carboxypyridine-2,6dicarboxylato)dioxidovanadate(V) monohydrate

Alvin A. Holder^a* and Don VanDerveer^b

^aDepartment of Chemistry and Biochemistry, University of Southern Mississippi, 118 College Drive No. 5043, Hattiesburg, MS 39406-0001, USA, and ^bChemistry Department, Clemson University, Clemson, SC 29634-0973, USA Correspondence e-mail: alvin.holder@usm.edu

Received 18 June 2007; accepted 27 June 2007

Key indicators: single-crystal X-ray study; T = 153 K; mean σ (C–C) = 0.003 Å; R factor = 0.032; wR factor = 0.079; data-to-parameter ratio = 11.0.

The title complex, $K[V(C_8H_3NO_6)O_2]\cdot H_2O$, was synthesized by reacting 4-carboxypyridine-2,6-dicarboxylic acid (contaminated as a potassium salt) with NH_4VO_3 in aqueous solution. The title complex, with a vanadium(V) metal center, is a distorted square-based pyramid. Its structure consists of chains of the anionic complexes in the direction of the *b* axis connected by potassium–oxygen interactions which range from 2.5981 (18) to 3.0909 (18) Å. These chains are linked to each other by hydrogen bonding between the O atoms of the complex and the water molecules.

Related literature

For related literature, see: Cassellato & Vigato (1978); Cingi *et al.* (1971); Crans *et al.* (2000); Crans, Mahroof-Tahir *et al.* (2003); Crans, Yang *et al.* (2003); D'Ascenzo *et al.* (1978); Drew *et al.* (1970); Dutta & Ghosh (1967); Furst *et al.* (1978); Gaw *et al.* (1971); Ghosh *et al.* (1978); Lukes & Jurecek (1948); Murtha & Walton (1973); Payne *et al.* (2007); Syper *et al.* (1980); Yang *et al.* (2002).

Experimental

Crystal data

$K[V(C_8H_3NO_6)O_2] \cdot H_2O$
$M_r = 349.17$
Orthorhombic, Pbca
$a = 7.8086 (16) \text{\AA}$
b = 16.342 (3) Å
c = 18.316 (4) Å

Data collection

Rigaku Mercury CCD
diffractometer17213 measured reflections
2099 independent reflectionsAbsorption correction: multi-scan
(REQAB; Rigaku/MSC, 1999)17213 measured reflections
2099 independent reflections
1951 reflections with $I > 2\sigma(I)$
 $R_{int} = 0.034$ $T_{min} = 0.573, T_{max} = 0.864$ 17213 measured reflections
2099 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	H atoms treated by a mixture of
$wR(F^2) = 0.079$	independent and constrained
S = 1.15	refinement
2099 reflections	$\Delta \rho_{\rm max} = 0.38 \ {\rm e} \ {\rm \AA}^{-3}$
190 parameters	$\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$

Table 1 Selected bond lengths (Å).

V1-O6	1.6187 (17)	V1-01	2.0091 (17)
V1-O5	1.6287 (17)	V1-N1	2.086 (2)
V1-O2	1.9949 (17)		

Data collection: *CrystalClear* (Rigaku/MSC, 2006); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

AAH thanks the University of Southern Mississippi for a startup grant (No. DE00977), which was very valuable in making this structural elucidation viable. AAH also thanks Dr William Jarrett for acquiring the 51 V NMR spectrum.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2108).

References

- Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cassellato, U. & Vigato, P. A. (1978). Coord. Chem. Rev. 26, 85-159.
- Cingi, M. B., Villa, A. C., Guastini, C. & Nardelli, M. (1971). Gazz. Chim. Ital. 101, 825–832.
- Crans, D. C., Mahroof-Tahir, M., Johnson, M. D., Wilkins, P. C., Yang, L., Robbins, K., Johnson, A., Alfano, J. A., Godzala, M. E., Austin, L. T. & Willsky, G. R. (2003). *Inorg. Chim. Acta*, **356**, 365–378.
- Crans, D. C., Yang, L., Alfano, J. A., Chi, L.-H., Jin, W., Mahroof-Tahir, M., Robbins, K., Toloue, M. M., Chan, L. K., Plante, A. J., Grayson, R. Z. & Willsky, G. R. (2003). *Coord. Chem. Rev.* 237, 13–22.
- Crans, D. C., Yang, L., Jakusch, T. & Kiss, T. (2000). *Inorg. Chem.* **39**, 4409–4416.
- D'Ascenzo, G., Marino, A., Sabbatini, M. & Bica, T. (1978). *Thermochim. Acta*, **25**, 325–332.
- Drew, M. G. B., Matthews, R. W. & Walton, R. A. (1970). J. Chem. Soc. A, pp. 1405–1410.
- Dutta, R. L. & Ghosh, S. (1967). J. Indian Chem. Soc. 44, 273-289.
- Furst, W., Gouzerch, P. & Jeannin, Y. (1978). J. Coord. Chem. 8, 237-243.

- Gaw, H., Robinson, W. R. & Walton, R. W. (1971). Inorg. Nucl. Chem. Lett. 7, 695–699.
- Ghosh, S., Banerjee, T. K. & Ray, P. K. (1978). J. Indian Chem. Soc. 55, 610–611.
- Lukes, R. & Jurecek, M. (1948). Collect. Czech. Chem. Commun. 13, 131–160. Murtha, D. P. & Walton, R. A. (1973). Inorg. Chem. 12, 1278–1282.
- Payne, V. C. R., Headley, O. S. C., Stibrany, R. T., Maragh, P. T., Dasgupta, T. P.,
- Newton, A. M. & Holder, A. A. (2007). J. Chem. Crystallogr. 37, 309–314.
- Rigaku/MSC (1999). *REQAB*. Rigaku/MSC, The Woodlands, Texas, USA.
- Rigaku/MSC (2006). CrystalClear. Version 1.3. Rigaku/MSC, The Woodlands, Texas, USA.
- Syper, L., Kloc, K. & Mlochowski, J. (1980). Tetrahedron, 36, 123-129.
- Yang, L., Crans, D. C., Miller, S. M., la Cour, A., Anderson, O. P., Kaszynski, P. M., Godzala, M. E., Austin, L. D. & Willsky, G. R. (2002). *Inorg. Chem.* 41, 4859–4871.

supplementary materials

Acta Cryst. (2007). E63, m2051-m2052 [doi:10.1107/S1600536807031418]

Potassium (4-carboxypyridine-2,6-dicarboxylato)dioxidovanadate(V) monohydrate

A. A. Holder and D. VanDerveer

Comment

Pyridine-2,6-dicarboxylic acid (dipicolinic acid, abbreviated as H₂dipic) has been found to be an interesting and versatile ligand for several reasons: (1) it can function as a tridentate ligand; (2) the carboxylate groups sometimes bridge two metal atoms (Cingi *et al.*, 1971); (3) coordination to a metal atom can occur through dianionic (dipic^{2–}) (Lukes & Jurecek, 1948, Dutta & Ghosh, 1967, Drew *et al.*, 1970), monoanionic (Hdipic[–]) (Murtha & Walton, 1973, Gaw *et al.*, 1971), or neutral (H2dipic) forms of this ligand (Drew *et al.*, 1970). Based on these facts, a large number of divalent or trivalent transition metal and lanthanide(III) complexes of dipicolinic acid have been studied (Payne *et al.*, 2007, Cassellato & Vigato, 1978, D'Ascenzo *et al.*, 1978, Ghosh *et al.*, 1978, Furst *et al.*, 1978). Recently, a number of cobalt- and vanadium-containing complexes with either 4-hydroxypyridine-2,6-dicarboxylic acid or dipicolinic acid as ligand, were reported to be insulin-like in nature (Crans, Mahroof-Tahir *et al.*, 2003, Crans, Yang *et al.*, 2003, Crans *et al.*, 2000, Yang *et al.*, 2002). As part of our interest in the coordination chemistry of analogues of dipicolinic acid, we now extend this chemistry to include the structural elucidation of the [VO₂(dipic-CO₂H][–] anion. The title complex, with a vanadium(V) metal centre, is a distorted square-based pyramid.

Experimental

 H_2 dipic-CO₂H was synthesized by the literature procedure (Syper *et al.*, 1980). Deionized water (20 cm³) was added to a mixture of H_2 dipic-CO₂H (3.15 g, 14.8 mmol) and NH₄VO₃ (1.74 g, 14.9 mmol) in a 50 cm³ beaker. The mixture was then heated to 353–363 K until the solution became clear yellow; while hot, the pH of the solution was reduced to 1.1 with 2 *M* HCl. The mixture was then heated for an additional 15 minutes and filtered to give a bright yellow-orange solution. Upon standing, a yellowish-white solid was formed. The crude product was filtered off and recrystallized from a minimum of hot water to give a solid, which was found to be the potassium salt, K[VO₂(dipic-CO₂H]·H₂O, as confirmed by X-ray crystallography.

FT IR (cm⁻¹): 3470 (br, v (OH)), 1682 (versus, $v_{as}(CO_2^{-})$), and 928 (versus, v (V=O)). ⁵¹V NMR (H₂O): $\delta = -533$ p.p.m.

Refinement

Positions of the water H atoms were determined from a difference Fourier map and their coordinates were refined freely. All remaining H atoms were geometrically positioned and allowed to ride on the corresponding non-H atom with C—H = 0.96 Å, O—H = 0.83 Å, and $U_{iso}(H) = 1.2U_{eq}(C,O)$. Figures

Potassium (4-carboxypyridine-2,6-dicarboxylato)dioxidovanadate(V) monohydrate

Crystal data

$K[V(C_8H_3NO_6)O_2]\cdot H_2O$	$D_{\rm x} = 1.985 {\rm Mg} {\rm m}^{-3}$
<i>M_r</i> = 349.17	Mo $K\alpha$ radiation $\lambda = 0.7107$ Å
Orthorhombic, Pbca	Cell parameters from 8517 reflections
a = 7.8086 (16) Å	$\theta = 3.1 - 26.4^{\circ}$
b = 16.342 (3) Å	$\mu = 1.25 \text{ mm}^{-1}$
c = 18.316 (4) Å	T = 153 (2) K
V = 2337.2 (8) Å ³	Plate, colorless
Z = 8	$0.50 \times 0.50 \times 0.12 \text{ mm}$
$F_{000} = 1392$	

Data collection

Rigaku Mercury CCD diffractometer	2099 independent reflections
Radiation source: Sealed Tube	1951 reflections with $I > 2\sigma(I)$
Monochromator: Graphite Monochromator	$R_{\rm int} = 0.034$
Detector resolution: 14.6306 pixels mm ⁻¹	$\theta_{\text{max}} = 25.2^{\circ}$
T = 153(2) K	$\theta_{\min} = 3.1^{\circ}$
ω scans	$h = -9 \rightarrow 9$
Absorption correction: multi-scan (REQAB; Rigaku/MSC, 1999)	$k = -19 \rightarrow 19$
$T_{\min} = 0.573, \ T_{\max} = 0.864$	$l = -21 \rightarrow 21$

17213 measured reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.032$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.079$	$w = 1/[\sigma^2(F_o^2) + (0.0337P)^2 + 2.9965P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.15	$(\Delta/\sigma)_{\rm max} = 0.001$
2099 reflections	$\Delta \rho_{max} = 0.38 \text{ e} \text{ Å}^{-3}$
190 parameters	$\Delta \rho_{min} = -0.42 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	The distance of the second

methods Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
V1	0.01940 (5)	0.56611 (2)	0.17052 (2)	0.01377 (14)
K1	-0.20989 (6)	0.21723 (3)	0.20644 (3)	0.02000 (16)
01	0.1877 (2)	0.65071 (9)	0.13611 (9)	0.0165 (3)
O2	-0.0321 (2)	0.45032 (10)	0.19712 (9)	0.0187 (4)
O3	0.4445 (2)	0.67819 (10)	0.08618 (9)	0.0192 (4)
O4	0.0627 (2)	0.32230 (10)	0.21357 (9)	0.0203 (4)
O5	-0.0230 (2)	0.60987 (10)	0.24834 (9)	0.0192 (4)
O6	-0.1336 (2)	0.58848 (10)	0.11431 (9)	0.0207 (4)
O7	0.7845 (2)	0.40826 (10)	0.03885 (9)	0.0199 (4)
H7	0.8721	0.3804	0.0325	0.024*
08	0.6847 (2)	0.29294 (10)	0.09009 (9)	0.0219 (4)
09	1.0655 (2)	0.33250 (12)	0.02454 (11)	0.0209 (4)
H9A	1.067 (5)	0.288 (2)	0.0436 (19)	0.038 (10)*
H9B	1.104 (5)	0.333 (2)	-0.017 (2)	0.058 (13)*
N1	0.2394 (2)	0.50057 (11)	0.14296 (10)	0.0138 (4)
C1	0.3378 (3)	0.63102 (14)	0.11050 (12)	0.0153 (5)

supplementary materials

C2	0.3713 (3)	0.54026 (14)	0.11337 (12)	0.0145 (5)
C3	0.5159 (3)	0.49909 (14)	0.09037 (12)	0.0146 (5)
Н3	0.6112	0.5277	0.0694	0.018*
C4	0.5181 (3)	0.41440 (15)	0.09881 (12)	0.0157 (5)
C5	0.3811 (3)	0.37328 (14)	0.13113 (12)	0.0162 (5)
Н5	0.3828	0.3150	0.1377	0.019*
C6	0.2425 (3)	0.42000 (14)	0.15330 (12)	0.0151 (5)
C7	0.0808 (3)	0.39222 (14)	0.19098 (13)	0.0173 (5)
C8	0.6716 (3)	0.36540 (14)	0.07538 (12)	0.0169 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
V1	0.0131 (2)	0.0131 (2)	0.0151 (2)	0.00022 (14)	0.00020 (15)	-0.00044 (15)
K1	0.0174 (3)	0.0170 (3)	0.0256 (3)	-0.00151 (19)	-0.0029 (2)	0.0042 (2)
01	0.0159 (8)	0.0123 (8)	0.0212 (8)	0.0005 (6)	0.0008 (7)	0.0006 (7)
O2	0.0163 (8)	0.0155 (8)	0.0244 (9)	0.0001 (7)	0.0035 (7)	0.0029 (7)
03	0.0183 (8)	0.0152 (8)	0.0242 (9)	-0.0039 (7)	0.0023 (7)	0.0025 (7)
O4	0.0220 (9)	0.0129 (9)	0.0260 (9)	-0.0027 (7)	0.0025 (7)	0.0023 (7)
05	0.0211 (9)	0.0174 (9)	0.0191 (8)	-0.0023 (7)	0.0032 (7)	-0.0016 (7)
06	0.0182 (8)	0.0208 (9)	0.0230 (9)	-0.0033 (7)	-0.0042 (7)	0.0044 (7)
07	0.0165 (8)	0.0204 (9)	0.0228 (9)	0.0025 (7)	0.0029 (7)	0.0001 (7)
08	0.0241 (9)	0.0184 (9)	0.0231 (9)	0.0042 (7)	0.0006 (7)	0.0025 (7)
O9	0.0223 (9)	0.0196 (10)	0.0208 (10)	0.0035 (7)	0.0036 (7)	0.0025 (8)
N1	0.0158 (9)	0.0128 (10)	0.0128 (9)	-0.0006 (7)	-0.0003 (8)	-0.0010 (7)
C1	0.0163 (11)	0.0156 (12)	0.0139 (11)	0.0007 (9)	-0.0012 (9)	-0.0004 (9)
C2	0.0158 (11)	0.0157 (11)	0.0120 (11)	-0.0031 (9)	-0.0027 (9)	-0.0003 (9)
C3	0.0156 (11)	0.0156 (12)	0.0127 (11)	-0.0007 (9)	-0.0008 (9)	0.0002 (9)
C4	0.0167 (11)	0.0197 (12)	0.0106 (11)	-0.0002 (9)	-0.0032 (9)	-0.0014 (9)
C5	0.0195 (12)	0.0148 (11)	0.0144 (11)	-0.0002 (9)	-0.0041 (9)	0.0003 (9)
C6	0.0167 (11)	0.0163 (12)	0.0124 (10)	-0.0023 (9)	-0.0024 (9)	0.0005 (9)
C7	0.0177 (11)	0.0174 (13)	0.0167 (11)	-0.0037 (9)	-0.0015 (9)	-0.0008 (9)
C8	0.0167 (11)	0.0190 (13)	0.0148 (11)	0.0014 (9)	-0.0018 (9)	-0.0010 (9)

Geometric parameters (Å, °)

V1—O6	1.6187 (17)	O5—K1 ^{vi}	2.6593 (17)
V1—O5	1.6287 (17)	O5—K1 ^{ix}	2.8313 (18)
V1—O2	1.9949 (17)	O6—K1 ^{ix}	2.9612 (19)
V1—O1	2.0091 (17)	O7—C8	1.310 (3)
V1—N1	2.086 (2)	O7—H7	0.830
K1-08 ⁱ	2.5981 (18)	O8—C8	1.219 (3)
K1—O5 ⁱⁱ	2.6593 (17)	O8—K1 ^x	2.5981 (18)
K1—O4	2.7377 (18)	О9—Н9А	0.81 (4)
K1—O5 ⁱⁱⁱ	2.8313 (18)	O9—H9B	0.81 (4)
K1—O4 ^{iv}	2.8721 (18)	N1—C6	1.330 (3)
K1—O6 ⁱⁱⁱ	2.9612 (19)	N1—C2	1.332 (3)

	2 00(7 (10)	61 62	1 505 (2)
K1—O1"	3.0867 (18)	C1—C2	1.507 (3)
K1—O3 ^v	3.0909 (18)	C2—C3	1.380 (3)
01—C1	1.303 (3)	C3—C4	1.393 (3)
$O1-K1^{v_1}$	3.0867 (18)	С3—Н3	0.960
O2—C7	1.301 (3)	C4—C5	1.395 (3)
03—C1	1.219 (3)	C4—C8	1.504 (3)
O3—K1 ^{vii}	3.0909 (18)	C5—C6	1.385 (3)
04—C7	1.224 (3)	С5—Н5	0.960
$O4-K1^{Viii}$	2.8721 (18)	C6—C7	1.509 (3)
O6—V1—O5	107.90 (9)	V1—O1—K1 ^{vi}	89.19 (6)
O6—V1—O2	102.76 (8)	C7—O2—V1	122.32 (15)
O5—V1—O2	99.31 (8)	C1—O3—K1 ^{vii}	109.16 (14)
O6—V1—O1	97.34 (8)	С7—О4—К1	131.29 (15)
O5—V1—O1	96.06 (8)	C7—O4—K1 ^{viii}	131.23 (15)
O2—V1—O1	149.45 (7)	K1—O4—K1 ^{viii}	97.47 (5)
O6—V1—N1	124.72 (8)	V1—O5—K1 ^{vi}	115.03 (8)
O5—V1—N1	127.20 (8)	V1—O5—K1 ^{ix}	100.65 (8)
O2—V1—N1	74.81 (7)	K1 ^{vi} —O5—K1 ^{ix}	100.33 (6)
O1—V1—N1	74.85 (7)	V1—O6—K1 ^{ix}	95.89 (7)
08 ⁱ —K1—O5 ⁱⁱ	141.84 (6)	С8—О7—Н7	109.5
08 ⁱ —K1—O4	89.24 (6)	C8—O8—K1 ^x	132.11 (15)
O5 ⁱⁱ —K1—O4	82.37 (5)	Н9А—О9—Н9В	114 (4)
08 ⁱ —K1—O5 ⁱⁱⁱ	106.51 (6)	C6—N1—C2	121.7 (2)
O5 ⁱⁱ —K1—O5 ⁱⁱⁱ	90.61 (5)	C6—N1—V1	119.25 (16)
O4—K1—O5 ⁱⁱⁱ	161.50 (5)	C2—N1—V1	119.01 (15)
08 ⁱ —K1—O4 ^{iv}	86.43 (5)	O3—C1—O1	126.2 (2)
O5 ⁱⁱ —K1—O4 ^{iv}	131.19 (5)	O3—C1—C2	121.1 (2)
O4—K1—O4 ^{iv}	94.67 (5)	01 - C1 - C2	112.74(10)
$O5^{iii}$ —K1— $O4^{iv}$		01 01 02	112.74 (19)
	77.10 (5)	N1-C2-C3	112.74 (19) 121.3 (2)
08 ⁱ —K1—O6 ⁱⁱⁱ	77.10 (5) 74.94 (5)	N1C2C3 N1C2C1	112.74 (19) 121.3 (2) 111.1 (2)
08 ⁱ —K1—O6 ⁱⁱⁱ 05 ⁱⁱ —K1—O6 ⁱⁱⁱ	77.10 (5) 74.94 (5) 89.49 (5)	N1C2C3 N1C2C1 C3C2C1	112.74 (19) 121.3 (2) 111.1 (2) 127.7 (2)
08^{i} —K1—O6 ⁱⁱⁱ O5 ⁱⁱ —K1—O6 ⁱⁱⁱ O4—K1—O6 ⁱⁱⁱ	77.10 (5) 74.94 (5) 89.49 (5) 142.54 (5)	N1C2C3 N1C2C1 C3C2C1 C2C3C4	112.74 (19) 121.3 (2) 111.1 (2) 127.7 (2) 117.4 (2)
08^{i} —K1—O6 ⁱⁱⁱ O5 ⁱⁱ —K1—O6 ⁱⁱⁱ O4—K1—O6 ⁱⁱⁱ O5 ⁱⁱⁱ —K1—O6 ⁱⁱⁱ	77.10 (5) 74.94 (5) 89.49 (5) 142.54 (5) 53.85 (5)	N1C2C3 N1C2C1 C3C2C1 C2C3C4 C2C3H3	112.74 (19) 121.3 (2) 111.1 (2) 127.7 (2) 117.4 (2) 121.3
08^{i} —K1—O6 ⁱⁱⁱ O5 ⁱⁱ —K1—O6 ⁱⁱⁱ O4—K1—O6 ⁱⁱⁱ O5 ⁱⁱⁱ —K1—O6 ⁱⁱⁱ O4 ^{iv} —K1—O6 ⁱⁱⁱ	77.10 (5) 74.94 (5) 89.49 (5) 142.54 (5) 53.85 (5) 117.40 (5)	N1C2C3 N1C2C1 C3C2C1 C2C3C4 C2C3H3 C4C3H3	112.74 (19) 121.3 (2) 111.1 (2) 127.7 (2) 117.4 (2) 121.3 121.3
08^{i} —K1—O6 ⁱⁱⁱ 05^{ii} —K1—O6 ⁱⁱⁱ 04—K1—O6 ⁱⁱⁱ 05^{iii} —K1—O6 ⁱⁱⁱ 04^{iv} —K1—O6 ⁱⁱⁱ 08^{i} —K1—O1 ⁱⁱ	77.10 (5) 74.94 (5) 89.49 (5) 142.54 (5) 53.85 (5) 117.40 (5) 162.14 (5)	N1C2C3 N1C2C1 C3C2C1 C2C3C4 C2C3H3 C4C3H3 C3C4C5	112.74 (19) 121.3 (2) 111.1 (2) 127.7 (2) 117.4 (2) 121.3 121.3 121.1 (2)
08^{i} —K1—O6 ⁱⁱⁱ 05^{ii} —K1—O6 ⁱⁱⁱ 04—K1—O6 ⁱⁱⁱ 05^{iii} —K1—O6 ⁱⁱⁱ 04^{iv} —K1—O6 ⁱⁱⁱ 08^{i} —K1—O1 ⁱⁱ 05^{iii} —K1—O1 ⁱⁱ	77.10 (5) 74.94 (5) 89.49 (5) 142.54 (5) 53.85 (5) 117.40 (5) 162.14 (5) 55.83 (5)	N1C2C3 N1C2C1 C3C2C1 C2C3C4 C2C3H3 C4C3H3 C3C4C5 C3C4C8	112.74 (19) 121.3 (2) 111.1 (2) 127.7 (2) 117.4 (2) 121.3 121.3 121.1 (2) 120.5 (2)
08^{i} —K1— 06^{iii} 05^{ii} —K1— 06^{iii} 04 —K1— 06^{iii} 05^{iii} —K1— 06^{iii} 04^{iv} —K1— 06^{iii} 08^{i} —K1— 01^{ii} 05^{ii} —K1— 01^{ii} 04 —K1— 01^{ii}	77.10 (5) 74.94 (5) 89.49 (5) 142.54 (5) 53.85 (5) 117.40 (5) 162.14 (5) 55.83 (5) 97.63 (5)	N1C2C3 N1C2C1 C3C2C1 C2C3C4 C2C3H3 C4C3H3 C3C4C5 C3C4C5 C3C4C8	112.74 (19) 121.3 (2) 111.1 (2) 127.7 (2) 117.4 (2) 121.3 121.3 121.1 (2) 120.5 (2) 118.4 (2)
08^{i} —K1—O6 ⁱⁱⁱ 05^{ii} —K1—O6 ⁱⁱⁱ 04—K1—O6 ⁱⁱⁱ 05^{iii} —K1—O6 ⁱⁱⁱ 08^{i} —K1—O1 ⁱⁱ 05^{ii} —K1—O1 ⁱⁱ 04—K1—O1 ⁱⁱ 05^{iii} —K1—O1 ⁱⁱ	77.10 (5) 74.94 (5) 89.49 (5) 142.54 (5) 53.85 (5) 117.40 (5) 162.14 (5) 55.83 (5) 97.63 (5) 64.52 (5)	N1C2C3 N1C2C1 C3C2C1 C2C3C4 C2C3H3 C4C3H3 C3C4C5 C3C4C8 C5C4C8 C6C5C4	112.74 (19) 121.3 (2) 111.1 (2) 127.7 (2) 117.4 (2) 121.3 121.3 121.1 (2) 120.5 (2) 118.4 (2) 117.3 (2)
08^{i} —K1—O6 ⁱⁱⁱ 05^{ii} —K1—O6 ⁱⁱⁱ 04—K1—O6 ⁱⁱⁱ 04^{iv} —K1—O6 ⁱⁱⁱ 08^{i} —K1—O1 ⁱⁱ 08^{i} —K1—O1 ⁱⁱ 04—K1—O1 ⁱⁱ 05^{iii} —K1—O1 ⁱⁱ 04^{iv} —K1—O1 ⁱⁱ	77.10 (5) 74.94 (5) 89.49 (5) 142.54 (5) 53.85 (5) 117.40 (5) 162.14 (5) 55.83 (5) 97.63 (5) 64.52 (5) 76.63 (5)	N1C2C3 N1C2C1 C3C2C1 C2C3C4 C2C3H3 C4C3H3 C3C4C5 C3C4C8 C5C4C8 C5C4C8 C6C5C4 C6C5H5	112.74 (19) 121.3 (2) 111.1 (2) 127.7 (2) 117.4 (2) 121.3 121.3 121.1 (2) 120.5 (2) 118.4 (2) 117.3 (2) 121.4
08^{i} —K1—O6 ⁱⁱⁱ 05^{ii} —K1—O6 ⁱⁱⁱ 04—K1—O6 ⁱⁱⁱ 04^{iv} —K1—O6 ⁱⁱⁱ 08^{i} —K1—O1 ⁱⁱ 05^{ii} —K1—O1 ⁱⁱ 04—K1—O1 ⁱⁱ 04—K1—O1 ⁱⁱ 04^{iv} —K1—O1 ⁱⁱ 04^{iv} —K1—O1 ⁱⁱ 04^{iv} —K1—O1 ⁱⁱ	77.10 (5) 74.94 (5) 89.49 (5) 142.54 (5) 53.85 (5) 117.40 (5) 162.14 (5) 55.83 (5) 97.63 (5) 64.52 (5) 76.63 (5) 107.78 (5)	N1C2C3 N1C2C1 C3C2C1 C2C3C4 C2C3H3 C4C3H3 C3C4C5 C3C4C8 C5C4C8 C6C5C4 C6C5H5 C4C5H5	112.74 (19) 121.3 (2) 111.1 (2) 127.7 (2) 117.4 (2) 121.3 121.3 121.1 (2) 120.5 (2) 118.4 (2) 117.3 (2) 121.4 121.4

supplementary materials

$O5^{ii}$ —K1— $O3^{v}$	68.11 (5)	N1—C6—C7	110.3 (2)
O4—K1—O3 ^v	69.04 (5)	C5—C6—C7	128.5 (2)
$O5^{iii}$ —K1— $O3^{v}$	123.99 (5)	O4—C7—O2	125.0 (2)
$O4^{iv}$ —K1— $O3^{v}$	154.36 (5)	O4—C7—C6	122.2 (2)
$O6^{iii}$ —K1— $O3^{v}$	73.98 (5)	O2—C7—C6	112.8 (2)
$O1^{ii}$ —K1— $O3^{v}$	123.75 (5)	O8—C8—O7	125.2 (2)
C1—O1—V1	122.11 (14)	O8—C8—C4	121.4 (2)
C1—O1—K1 ^{vi}	111.89 (13)	O7—C8—C4	113.4 (2)

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) –*x*, *y*-1/2, –*z*+1/2; (iii) –*x*-1/2, *y*-1/2, *z*; (iv) *x*-1/2, *y*, –*z*+1/2; (v) –*x*+1/2, *y*-1/2, *z*; (vi) –*x*, *y*+1/2, –*z*+1/2; (vii) –*x*+1/2, *y*+1/2, *z*; (viii) *x*+1/2, *y*, –*z*+1/2; (ix) –*x*-1/2, *y*+1/2, *z*; (x) *x*+1, *y*, *z*.

⊘⁰⁹